首页> 外文OA文献 >Performance-aware Component Composition for GPU-based systems
【2h】

Performance-aware Component Composition for GPU-based systems

机译:基于GPU的系统的性能感知组件组成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis addresses issues associated with efficiently programming modern heterogeneous GPU-based systems, containing multicore CPUs and one or more programmable Graphics Processing Units (GPUs). We use ideas from component-based programming to address programming, performance and portability issues of these heterogeneous systems. Specifically, we present three approaches that all use the idea of having multiple implementations for each computation; performance is achieved/retained either a) by selecting a suitable implementation for each computation on a given platform or b) by dividing the computation work across different implementations running on CPU and GPU devices in parallel. In the first approach, we work on a skeleton programming library (SkePU) that provides high-level abstraction while making intelligent  implementation selection decisions underneath either before or during the actual program execution. In the second approach, we develop a composition tool that parses extra information (metadata) from XML files, makes certain decisions online, and, in the end, generates code for making the final decisions at runtime. The third approach is a framework that uses source-code annotations and program analysis to generate code for the runtime library to make the selection decision at runtime. With a generic performance modeling API alongside program analysis capabilities, it supports online tuning as well as complex program transformations. These approaches differ in terms of genericity, intrusiveness, capabilities and knowledge about the program source-code; however, they all demonstrate usefulness of component programming techniques for programming GPU-based systems. With experimental evaluation, we demonstrate how all three approaches, although different in their own way, provide good performance on different GPU-based systems for a variety of applications.
机译:本文解决了与有效编程基于现代异构GPU的系统相关的问题,该系统包含多核CPU和一个或多个可编程图形处理单元(GPU)。我们使用基于组件的编程思想来解决这些异构系​​统的编程,性能和可移植性问题。具体来说,我们提出了三种方法,它们都使用对每个计算具有多个实现的想法。 a)通过为给定平台上的每个计算选择合适的实现,或b)将计算工作划分为并行运行在CPU和GPU设备上的不同实现来实现/保持性能。在第一种方法中,我们在一个框架编程库(SkePU)上进行工作,该库提供了高级抽象,同时在实际程序执行之前或之中做出智能的实现选择决定。在第二种方法中,我们开发了一种组合工具,该工具可以分析XML文件中的额外信息(元数据),在线做出某些决策,最后生成在运行时做出最终决策的代码。第三种方法是使用源代码注释和程序分析为运行时库生成代码以在运行时做出选择决定的框架。借助具有程序分析功能的通用性能建模API,它支持在线调整以及复杂的程序转换。这些方法在通用性,侵入性,功能和有关程序源代码的知识方面有所不同;但是,它们都展示了组件编程技术对基于GPU的系统进行编程的有用性。通过实验评估,我们演示了尽管这三种方法虽然有所不同,但它们如何在不同的基于GPU的系统上为各种应用提供良好的性能。

著录项

  • 作者

    Dastgeer, Usman;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号